SSGRR-2001

Managing a Successful Open Source Software
Project: FreeDOS as an Example

Jim Hall

Abstract— This article explains how to manage
a successful Open Source Software project. The
“Cathedral and the Bazaar” model is explored, and
different types of Open Source and Free Software
projects are classified. The components that make
up a successful Open Source project are itemized,
including choice of license and the level of involve-
ment required by project coordinators. The Free-
DOS Project is used throughout to demonstrate
the success that a marginal project can achieve by
following these principles of Open Source Software
project management and development.

Keywords— Open Source, Software, Management

I. INTRODUCTION

N organization’s Open Source strategy is be-

coming increasingly important in today’s
economy. Many users are beginning to expect and
demand that much of the software they use be
available to them in source form. The availabil-
ity of source code to a program transforms that
project into Open Source Software.

II. TuE CATHEDRAL AND THE BAZAAR

The open source software community is fond of
using the comparison of cathedrals versus bazaars
to demonstrate the differences between how open
source and proprietary software is developed. This
model was coined by open source software evan-
gelist Eric S. Raymond in his 1996 essay, “The
Cathedral and the Bazaar.” Raymond’s compari-
son is simple:

Linuz overturned much of what I thought I
knew. I had been preaching the Uniz gospel of
small tools, rapid prototyping and evolutionary
programming for years. But I also believed there
was a certain critical complexity above which a
more centralized, a priori approach was required.
I believed that the most important software (oper-

Jim Hall is the founder and coordinator of the Free-

DOS Project (http://www.freedos.org) and can be reached at
jhall@freedos.org.

ating systems and really large tools like the Emacs
programming editor) needed to be built like cathe-
drals, carefully crafted by individual wizards or
small bands of mages working in splendid isola-
tion, with no beta to be released before its time.
Linus Torvalds’s style of development—release
early and often, delegate everything you can, be
open to the point of promiscuity—came as a Sur-
prise. No quiet, reverent cathedral-building here—
rather, the Linux community seemed to resemble
a great babbling bazaar of differing agendas and
approaches (aptly symbolized by the Linuz archive
sites, who’d take submissions from anyone) out of
which a coherent and stable system could seem-
ingly emerge only by a succession of miracles. [4]
Raymond’s is a very concise description of the
open source software development model. I espe-
cially like this comparison because it is:
1. Simple enough to propagate
2. Easy enough for non-technical people to accept
3. Catchy

III. WHAT 1S OPEN SOURCE SOFTWARE?

Before we go further, it would be a good idea
to step back and define exactly what we mean by
the phrase “open source software.” This term is
used a lot in the news, by developers, by managers.
Yet each person seems to have a slightly different
idea of what “open source” really means. In some
extreme cases, the term “open source” is used in-
terchangeably with “free software.” We will see
that the two are not always the same.

A. Open Source Software

Put simply, open source software is any software
where users can see the source code. There are re-
markably few rules that govern the conditions by
which users may view the source code. However,
the Internet community at large has come to rec-
ognize any software that provides source code as
being “open source.”

SSGRR-2001

Unfortunately, this definition is pretty vague.
The Open Source Initiative (OSI) [1] has at-
tempted to document the conditions that define
an open source license. These may be summarized
below:

1. Free redistribution: Others are permitted to
share (or sell) the software, but the license does
not require that the author be paid.

2. Source code: The program must provide source
code, and allow others to distribute the source
code.

3. Derived works: The license must allow others
to create works based on the open source software,
under the same open license terms.

Integrity of the author’s source code.

No discrimination against persons or groups.
No discrimination against fields of endeavor.
Distribution of license.

License must not be specific to a product.
License must not contaminate other software.

© PN O

—

2]

However, the gist of “open source” software is
that anyone must be able to view the source code,
and both the program and its source code can be
shared with others.

B. Free Software

Some free software developers have started to
use the term “open source software” interchange-
ably with “free software”. While free software by
any other name would give you the same freedom,
it makes a big difference which name we use: dif-
ferent words convey different meanings.

The Free Software Foundation [3] is the body
most recognized for its work with free software,
and it takes serious issue with the confusion be-
tween the two terms “open source” and “free soft-
ware.” The following is the definition used by the
Free Software Foundation:

The obvious meaning for “open source soft-
ware” s “You can look at the source code.” This
15 a much weaker criterion than “free software”; it
includes free software, but also includes semi-free
programs such as Xv, and even some proprietary
programs, including Qt under its original license
(before the QPL).

That obvious meaning for “open source” is not
the meaning that its advocates intend. (Their
“offictal” definition ts much closer to “free soft-

ware.”) The result is that people often misun-
derstand them. Of course, this can be addressed
by publishing a precise definition for the term.
The people using “open source software” have done
this, just as we have done for “free software.” But
this approach s only partially effective in either
case. For free software, we have to teach people
that we intend one meaning rather than another
which fits the words equally well. For open source,
we would have to teach them to use a meaning
which does not really fit at all. [5]

Free software is a matter of the users’ freedom to
run, copy, distribute, study, change and improve
the software. Like open source software, this re-
quires that the source code be made available to
the end user, otherwise the user would not be able
to study, change and improve the software. In this
usage, the “free” refers to freedom, not price. This
is also the origin of the much-used motto “free as
in speech, not as in beer.”

More precisely, it refers to four fundamental
kinds of freedom for the users of the software:

1. The freedom to run the program, for any pur-
pose.

2. The freedom to study how the program works,
and adapt it to your needs. Access to the source
code is a precondition for this.

3. The freedom to redistribute copies so you can
help your neighbor.

4. The freedom to improve the program, and re-
lease your improvements to the public, so that the
whole community benefits. Access to the source
code is a precondition for this. [6]

The Free Software Foundation guarantees these
freedoms through its GNU General Public License
(GPL). [7] The licenses for most software are de-
signed to take away your freedom to share and
change it. By contrast, the GNU GPL is intended
to guarantee your freedom to share and change
free software-to make sure the software is free for
all its users. The GNU GPL is designed to make
sure that you have the freedom to distribute copies
of free software (and charge for this service if you
wish), that you receive source code or can get it
if you want it, that you can change the software
or use pieces of it in new free programs; and that
you know you can do these things. The General
Public License does not permit incorporating your
program into proprietary programs.

SSGRR-2001

So, free software is similar to open source soft-
ware, but they are not quite identical. The defini-
tion of open source software does not quite meet
the standards of free software. However, the def-
inition of free software does qualify itself as open
source software.

IV. WHAT MAKES A GooD OPEN SOURCE
PRrRoOJECT?

An organization’s Open Source strategy is be-
coming increasingly important in today’s econ-
omy. Many users are beginning to expect and
demand that much of the software they use be
available to them in source form. Therefore, it is
important to understand the qualities of effective
open source projects.

There are ten basic qualities that an open source
project must possess in order for it to succeed.

A. FEvery good project starts by scratching a per-
sonal itch

My first exposure to managing an open
source software project started with the FreeDOS
Project, and began in 1994. I was a physics stu-
dent at the University of Wisconsin-River Falls,
and I used DOS quite a lot to do data analysis,
write papers and physics reports, dial into the Uni-
versity network, and write small programs to help
make my life easier. DOS meant a lot to me, and
I was most comfortable with using DOS to get my
work done.

So it was a bit of a surprise when Microsoft
announced that they would stop support of MS-
DOS, and that everyone would soon be using their
Windows product. Of course, note the timing—this
is a little over a year before the launch of Windows
95. I didn’t like Windows (then, at version 3.1) be-
cause I felt it made my work too difficult. I could
accomplish the same tasks in DOS, mostly using
the command line, and I could do it faster than in
Windows. In Windows, everything was done with
a mouse. It just slowed me down, and I felt it was
a sloppy GUL.

I wasn’t alone. A lot of other people on various
DOS newsgroups were shocked to hear that MS-
DOS would soon go away. They didn’t like Win-
dows any more than I did, and they were just as
resistant in being “forced” to migrate to Windows
and away from our lovely DOS operating system.

3

And many people did not have machines capable
of running even Windows 3.1, let alone a “next
generation” version of Windows. I had a ’386 with
4MB memory (later upgraded to 8MB.) A lot of
people still had 286 PC’s. You just can’t run Win-
dows in that. If Microsoft were going to push us
toward Windows, we’d need to upgrade our PC’s.
And that didn’t seem right. We felt as though
our freedom were being taken away as well when
Microsoft decided to take away MS-DOS.

So, on the newsgroups, people started trying
to find ways to preserve their freedom. By 1994,
Linux had become an underground success story
in a lot of Universities. People looked to Linux
and asked, “if they can create an free version of
UNIX, can we create a free version of DOS?” 1
had already installed Linux in a dual-boot con-
figuration (with MS-DOS) on my 386, so I knew
what a great operating system Linux was. Writing
a version of DOS seemed almost trivial next to a
multi-tasking, multi-user UNIX kernel.

After a number of weeks, no one on the DOS
newsgroups seemed to be interested in starting a
free DOS project, but a lot of people definitely
wanted one. I was afraid that if someone didn’t
at least try to create a free DOS, the initiative
might be lost, so [posted a note to the newsgroups
announcing my intention to create such a project.

People liked the idea! I immediately started to
get email from people who wanted to contribute.
A few more programs were contributed, and we
started scanning the ftp sites for free programs
that reproduced MS-DOS functionality and that
included source code.

The origins of the FreeDOS Project could just
as well apply to any open source software project.
In order for the project to exist, there must first
be a need. A developer fills that need for himself
by writing software, and then turns it into open
source software when he gives away the source
code for others to share and improve.

B. Users should be co-developers

The definition for open source software is that
the source code must be open to inspection. A
necessary side-effect of this statement is that the
users of the software will then be able to view
the source code, and make improvements to it.
In a well-managed open source software project

SSGRR-2001

will then accept those improvements in the form
of patches, and then a new release of the project
is made that benefits all its users.

The power of this effect is easy to underesti-
mate. In fact, pretty well all of us in the open
source world drastically underestimated how well
it would scale up with number of users and against
system complexity.

Take, for example, the FreeDOS Project’s kernel
effort (DOS-C):

DOS-C started in 1988 as an experiment started
by Pasquale J. Villani in writing device drivers in
C for Microsoft’s MS-DOS. Both block and char-
acter device drivers were written, along with spe-
cial C data structures to match the MS-DOS re-
quest packet. It was then recognized that using
the same techniques, an operating system could be
written that would take advantage of the C lan-
guage features and would require much less time
to develop than the traditional assembly language
techniques. Although UNIX had proven this ear-
lier, it was not tried with a traditional PC oper-
ating system.

At this time, a minimal operating system using
the device drivers written earlier along with a new
8086 interrupt API was developed. It was called
XDOS and proved to be a functional operating
system. This new operating system was used to
develop booting techniques and a C library SDK
was developed for it.

XDOS enhancements were started in 1989 and
MS-DOS was chosen as the new API. A more
advanced architecture was also developed. This
included the use of an IPL (intermediate pro-
gram loader) to set up the operating environment
prior to loading the operating system itself and
re-entrant system calls facilitating real-time ap-
plications. This version, known as NSS-DOS, was
completed and demonstrated in 1991.

New proprietary techniques were added that al-
lowed the same source to be compiled on a variety
of hosts and with a wide range of compilers. This
new version, DOS/NT, was the result o of this new
project. The kernel was redesigned as a micro ker-
nel along with logical separation of the file system,
memory and task managers. A new DOS API was
designed along with a new DOS SDK to guaran-
tee portability. Additionally, all processor unique
code was separated from the core functions. The

4

result is the highly portable operating system that
DOS/NT represents. [9]

After a number of successful commercial appli-
cations, DOS/NT became part of both DOSEmu
and the FreeDOS Project in 1995. DOS/NT was
released under the GNU General Public License,
now making it open source software, and re-named

DOS-C.

However, it is important to note that, although
DOS-C had been quite mature in its development
from 1988 to 1995, it had only been maintained by
one person. As a result, debugging and code im-
provement were limited to the time and resources
available to Villani.

When the source code to DOS-C was made
available to the public, the FreeDOS kernel was
not able to support LBA, CD-ROM drivers, or
network redirection. Most noticeable in the Free-
DOS kernel was floppy access speed. While floppy
drive support was functional, Villani originally
wrote the code as part of a real-time OS that
worked with DMA and was multitasking. Floppy
access was always set for read-ahead, so that while
DOS-C was reading or writing the current sector,
the next one was filling the buffer. On the PC,
DOS-C must fetch each sector and wait until it
finishes. Each sector read waits for another rev-
olution of the disk, and since this is tens of mil-
liseconds, it is very slow.

However, when the source code to DOS-C was
made available to the FreeDOS community, other
developers were able to inspect the code. Im-
provements were suggested very rapidly. A de-
veloper named ror4 provided a floppy driver that
enabled buffering, considerably speeding up the
floppy drive access for FreeDOS. Another devel-
oper named James Tabor provided CD-ROM sup-
port and added network redirection, which was
later improved by FreeDOS and DOSEmu contrib-
utors Bart Oldeman and Tom Ehlert. Yet another
developer named Brian Reifsnyder provided LBA
support. The list of patches goes on, with more
names than can be listed here.

As a result of opening the source code to its
users, the FreeDOS community was able to pro-
vide rapid code improvement and debugging. In
contrast to the cathedral-building style of Villani’s
original development of XDOS and its successors,
the evolution of the FreeDOS kernel was fluid and

SSGRR-2001

very user-driven. Ideas and prototypes were of-
ten rewritten three or four times before reaching
a stable final form in the kernel.

This concept of sharing source code for its co-
operative development and improvement is often
referred to as “mind share,” and is key for the
development of any open source software project.
Given a large enough co-developer base, even a
complex system such as an operating system ker-
nel can become simple to develop and to maintain.

C. Release early, release often

When many developers are involved in a single
software project, many patches can be provided
in a fairly small time window. It is important
to maintain constant feedback to the users who
are the co-developers of an open source software
project. As projects continue to be supported by
more than one person, we have begun to recognize
the importance of frequent releases.

As new patches are provided to a project, a
successful open source project must then release
a new version of the software that includes those
patches. This can sometimes be a daunting task.
The importance is in keeping the co-developers
and users constantly stimulated and rewarded by
the sight of constant (even daily) improvement in
the system they are using.

Yes, this can often result in an unstable release.
But as your co-developers begin to see the im-
mediate effect of patch becoming process, releases
will result in a steady evolution of the source code
into stable versions of the software. As was men-
tioned before, the bazaar model sometimes will re-
semble a babbling chaos of differing agendas and
approaches out of which a coherent and stable sys-
tem emerges only by a succession of miracles. Re-
leases will be made, and the software will improve.

But the frequency with which you release your
software will often depend on its size. A small li-
brary such as FreeDOS Cats (an implementation
of the UNIX catgets function, to add internation-
alization support to FreeDOS programs) might be
released quite often; sometimes, I have released
more than one version of Cats in one day. A ba-
sic utility program such as type or more might be
modified heavily only in spurts, for example when
Cats support was added, but would otherwise re-
main static.

A collection of software, however, such as the
FreeDOS beta distributions (the latest version is
Beta6) might be released in increments, when
enough of the packages have matured and sta-
bilized. The FreeDOS distributions are released
about once every six months. This is similar to
commercial software, which is released according
to some regular schedule. However, note that
even a large collection such as the FreeDOS dis-
tribution still follows the “release early, release of-
ten” motto. While it may seem long to a Free-
DOS developer, six months to wait between re-
leases is still much less than the release cycle that
large cathedral-building software companies typi-
cally use: Microsoft’s Windows operating system
is released about once every other year.

D. Project coordinator/maintainer

Looking at the chaos of the bazaar, with a con-
stant stream of patches and releases, we begin to
wonder what holds it all together. How does this
not devolve into self-destruction? The answer lies
in the project maintainer.

An open source software project’s coordina-
tor should have good people and communications
skills. This person will be responsible for many
things, including accepting and merging software
patches, helping to contribute to the project’s doc-
umentation, listening to what the users and co-
developers are looking for (but perhaps are not
yet able to provide) and find ways to accommo-
date them.

But perhaps the skill that the project coordi-
nator will find most useful is the ability to listen.
The coordinator must recognize that no one per-
son will have all of the correct answers all of the
time. Knowledge and insight will come from dif-
ferent directions. It is the coordinator’s ultimate
responsibility to understand that many developers
working together on a project are better than one
talented hacker.

When I founded the FreeDOS Project, I came
into it with the naive view that most of my time
could be spent writing code for FreeDOS, and
only a little of my time dedicated to the vari-
ous tasks of keeping the various efforts moving
forward. My first contribution to the FreeDOS
Project was writing basic file utilities. Later, I
wrote the FreeDOS Install program, and became

SSGRR-2001

the release coordinator for each of the FreeDOS
beta releases.

In the early days, this was great. After all,
I was still a student when FreeDOS was born,
so how much time did I really have to dedicate
to managing everyone’s efforts? However, as the
FreeDOS Project quickly grew, I began to real-
ize that the opposite would be true: most of my
time would focus on various coordination activi-
ties for the FreeDOS Project, such as responding
to queries, writing documentation, and web site
management, leaving little time for writing actual
code.

Today, I spend approximately 90% of my
time coordinating various efforts in the FreeDOS
Project. In this seeming bazaar of conflicting
agendas, differences of opinion are bound to ap-
pear. I try to take a hands-off approach in these
clashes of egos, but I do act as a mediator to help
both sides reach an agreement. Also, without a
webmaster, I manage both the FreeDOS web site
and the FreeDOS files archive. This leaves me pre-
cious little coding time available for the FreeDOS
Project. I haven’t contributed code for the Free-
DOS kernel or FreeCOM (the FreeDOS command
shell) in years. However, the dream of a free ver-
sion of DOS, with source code available to all, is
still alive, and that is what keeps me active in the
FreeDOS Project. Each coordinator for an open
source software project must similarly find his own
motivation.

But other time commitments may eventually
get in the way, and when that happens, motiva-
tion tends to suffer. When that happens, the only
option left may be to hand the project over to
someone else. This has happened to me once, in
1995 when I became gainfully employed in the pri-
vate sector and getting acquainted with my new
job ate up most of my free time. I passed the
role of FreeDOS Project Coordinator on to Mor-
gan “Hannibal” Toal. In 1997, Toal’s involvement
with the FreeDOS Project began to dwindle, while
mine began to be re-invested, and in November of
that year we passed the torch back to me.

Other open source software projects see this all
the time. After several years of working with the
FreeDOS Project, Villani found he was no longer
able to dedicate sufficient time to the development
of the FreeDOS Kernel. Jim Tabor had recently

6

contributed CD-ROM support to the kernel, and
both he and Villani agreed that Tabor would be-
come the new kernel maintainer. In 2001, Tabor
similarly found that his free time was no longer
enough to respond to kernel patches that users
were submitting. Again, Bart Oldeman had been
working quite closely with the kernel for some
time, and both Tabor and Oldeman agreed that
it would be best for the FreeDOS Kernel if Olde-
man became the new kernel maintainer.

These examples highlight an important point of
open source software development: the success of
the project does not (and should not) depend on
one person. When you lose interest in an open
source project, your last act as the project’s main-
tainer to it is to hand off the role to a competent
SUCCesSsor.

E. Organization of the project

As discussed earlier, it is important to recog-
nize that the users of an open source software
project are also its co-developers. The success
of the project depends solely on enough develop-
ers contributing toward that project. So it is ex-
tremely important to make the project interesting
to developers.

When the FreeDOS Project was first founded in
1994, the Web had not yet become reality. It was
not until around 1995 that the Mosaic web browser
became readily available, and several years would
pass before a majority of “Netizens” had access to
the Web from their homes. So in our beginning,
it was easy enough for the FreeDOS Project to
simply provide an ftp site with all our software
and source code. We conversed with one another
via USENET newsgroups.

In today’s world, a simple download site and dis-
cussion forum is not enough to garner new interest,
and hence attract new blood to the development
effort of the FreeDOS Project. Any modern open
source software project that wants to thrive must
provide a web site. And more importantly, that
web site must be well organized.

The project web site must provide a continuous
stream of news about where the project is going,
new developments, major bugs found and fixed,
and recognition of the project by outside groups.
Developers are people too, and we like to see our
name in print, even if it is on a transient medium

SSGRR-2001

that is the Web. Spotlight those who make major
contributions, but strike a careful balance. One
sure way to kill interest in newcomers is to estab-
lish an environment of “us vs. them.” Remember:
an open source software project is for everyone!
Remain inclusive, not a members-only club.

The web site must make it easy to find every-
thing about the project. Not everyone who decides
to contribute to a project will be a developer capa-
ble of contributing code. Rather, some users will
only be able to provide debugging information on
strange new hardware. Others will have expertise
in user interface design, while others will be highly
skilled technical writers.

When the FreeDOS Project was formed, the
need to create a free DOS was obvious: Microsoft
was going to drop support for MS-DOS, but we
still used and loved the DOS platform. If Mi-
crosoft wasn’t going to continue with DOS, we
needed to create and support our own DOS plat-
form. My assumption at the time was that the
only people who would use and contribute to the
FreeDOS Project would be others who had used
DOS for years and understood its technical un-
derpinnings. Novice users, I assumed, would fol-
low Microsoft down the path of Windows. I didn’t
know any better.

A lot of “general” users are using FreeDOS these
days. Often, I hear about someone who has in-
stalled FreeDOS on an old PC they brought home
from work, or on a PC that a friend gave to them.
These systems are often too slow or don’t have
enough memory to run Windows or even Linux,
but they will run FreeDOS just fine. A good num-
ber of these systems are used to access the Inter-
net (using dosppp to dial the Internet provider)
or as a system to write letters to friends and fam-
ily with a DOS-based word processor. With the
introduction of Seal as a graphical user interface
to FreeDOS, more users who may never have used
the DOS command line are now beginning to ap-
proach FreeDOS as a serious alternative operating
system.

A good web site that provides the information
these users are looking for will benefit the project
as a whole. For example, on the FreeDOS web
site we provide ways that graphic artists might
contribute web banners for the FreeDOS site, or
for software testers to help us identify new prob-

7

lems, or for technical writers to assist us in cre-
ating a body of documentation that helps others
understand FreeDOS. This underscores the fact
that the users of an open source software project
such as FreeDOS are not all of one ilk. As more
and more users come to the project, the variety of
those contributing to it will increase.

F. Documentation

Documentation is often the first introduction a
user will have to an open source software system.
It provides both a way for new users to become
acquainted with the software (in the form of user
manuals) and for more experienced users to learn
how to perform complicated tasks more easily with
the software (in the form of recipe guides, also
referred to as a “Howto.”) So it is not surprising
that a large effort is typically put into making the
documentation for an open source software project
a first-rate experience.

This is such an important step for many
projects, and often the documentation effort it-
self is split off into a separate, related project.
Linux enthusiast Matt Welsh co-founded an ef-
fort to provide documentation for fellow Linux
users, by writing recipe guides. In doing so, Matt
demonstrated the success that a documentation
effort can achieve. Today, the Linux Documen-
tation Project’s HOWTO guides are well-respected,
frequently reprinted as books, and often referred
to as one of the reasons for the success of Linux.

Recognizing the success the Linux Documenta-
tion Project (LDP) had in raising understanding
about Linux, the FreeDOS Project has formed a
similar sub-project. In the founding of the Free-
DOS Documentation Project (FD-DOC), we fol-
lowed the spirit of Matt’s intent with the LDP.
It would be well for any documentation effort to
follow similar goals:

1. The documentation project is primarily a ve-
hicle for enthusiasts and developers to share their
knowledge about the system with other users and
co-developers. People are motivated to contribute
to the documentation effort because they know
that by having their articles on the web site, many
users are likely to read what they have written.

2. The documentation project should be the de
facto standard place for people to go to find out
about the open source software project that it sup-

SSGRR-2001

ports.

3. As such, it is wvital that it is as easy as possi-
ble for people to contribute to the documentation
effort. Participation in complex standards pro-
cesses, voting organizations, or high-traffic mailing
lists should never be a requirement.

4. Likewise, the tools used to write documentation
should be easy to use, widely-available, free, and
well-supported. In the FreeDOS Documentation
Project, we have adopted the roff program with
the -ms macros to typeset our documents. We
find that this is a widely-accepted documentation
standard that is easy for new users to learn. Other
documentation projects have chosen similar tools
such as DocBook (an XML-based typesetting sys-
tem.)

5. It is important to make it clear that the docu-
mentation project is open to contribution by any-
one, and is not a closed, privately-run organization
motivated by corporate profit concerns. Other-
wise, the documentation project loses its identity
as an open organization which exists to serve the
user community as a whole. [10]

G. Bug tracking

Often a major sticking point for newcomers to
open source software is the issue of tracking bugs.
To empower your users as co-developers, you must
provide them with the information needed to be-
come efficient developers. An open source soft-
ware project must equip its developers with a bug
tracking mechanism. After all, a software project
cannot improve itself if it cannot identify what is
wrong in the software.

There are a number of bug tracking systems
available for an open source software project. [11]
Bugzilla, Jitterbug, and GNATS seem to be the
most popular. These bug tracking tools all share
a common set of features:

1. The bug tracking system must be easy to use.
This applies both for entering new bugs and for
tracking existing bugs. A system that is difficult
to enter new bugs will not be used, and problems
in the software will remain unaddressed. A system
that makes it difficult to reassign bugs and to mark
them as resolved will be similarly abandoned.

2. The bug tracking system must have a strong
query capability. If users cannot find existing
bugs, duplicates will be reported.

3. The system must be open to all eyes. This is
perhaps the most difficult item for traditional soft-
ware managers to accept. In the cathedral model
of software development, bug lists are often hid-
den from customers. After all, there is no beta
of the software released before its time, and soft-
ware is released only when it is deemed “ready”
by an internal quality assurance team, not by its
end-users. However, in the bazaar model of soft-
ware development, everyone who uses the software
is potentially a developer for the system. In order
to foster new development and patches to the sys-
tem, developers must be able to see what bugs
currently exist.

The FreeDOS Project uses a bug tracking sys-
tem called simply bugtrack that merges the sim-
plicity of Jitterbug with a user-friendly interface
similar to Bugzilla. As of June 2001, over 750 ac-
tive bugs had been entered into bugtrack. This
might seem a large number, especially in a small
project such as FreeDOS, but it highlights the fact
that everyone who uses the system is also help-
ing to debug it. More users find more bugs be-
cause adding more users adds more different ways
of stressing the program. This effect is ampli-
fied when the users are co-developers. Each one
approaches the task of bug characterization with
a slightly different perceptual set and analytical
toolkit, a different angle on the problem.

This level of openness is impossible without an
effective bug tracking tool that is open to every-
one.

H. Make source code available

Put simply, open source software is any software
where users can see the source code. There are re-
markably few rules that govern the conditions by
which users may view the source code. However,
the Internet community at large has come to rec-
ognize any software that provides source code as
being “open source.”

Open source software requires that the source
code be open to inspection. The users of the soft-
ware must be able to view source code and to make
improvements to it. The project’s maintainer can
accept those improvements in the form of patches,
and then a new release of the project made that
benefits all its users.

Take, for example, the FreeDOS Project’s kernel

SSGRR-2001

effort (DOS-C): when the source code to DOS-C
was made available to the FreeDOS community,
other developers were finally able to inspect the
code. Improvements were suggested very rapidly,
resulting in increased floppy access speed, CD-
ROM support, network redirection, and LBA.

As a result of opening the source code to its
users, the FreeDOS community was able to pro-
vide rapid code improvement and debugging. In
contrast to the cathedral-building style of Villani’s
original development of XDOS and its successors,
the evolution of the FreeDOS kernel was fluid and
very user-driven. Ideas and prototypes were of-
ten rewritten three or four times before reaching
a stable final form in the kernel.

Making the source code available to its users
allows for the cooperative development and rapid
code improvement that fosters “mind share.”

1. Respond to submissions

Treating your users as co-developers is your
least-hassle route to rapid code improvement and
effective debugging. Because source code is avail-
able, an open source software project can enjoy
shortened debugging time. Given a bit of en-
couragement, your users will diagnose problems,
suggest fixes, and help improve the code far more
quickly than you could unaided.

However, the only way to keep your users work-
ing with you as co-developers is to respond to the
patches they provide. Keeping the co-developers
and users constantly stimulated and rewarded by
the sight of constant (even daily) improvement in
the system they are using.

In the FreeDOS Project, my most active de-
velopment efforts are aimed at the installer and
a library called Cats (to provide internationaliza-
tion support to DOS programs.) A very compe-
tent hacker named Jeremy Davis found an interest
in these programs, and began to regularly submit
patches. Eager to have help in my coding efforts,
I responded by immediately reviewing his patches
and checking them into the source tree. Releases
of the software became more frequent, and bugs
were quickly identified and patched.

None of this would have been possible had I
stopped responding to Davis. Even when I suf-
fered a hard disk crash in the middle of our coding
efforts, I let him know that I was still reviewing

9

the work and checking in what I could. The key
to our collaboration was constant feedback.

The worst thing that can happen to an open
source project is to become unresponsive to its
users. After all, the users are also the developers.
A sure way for a project to kill interest is for the
maintainer to reply to a developer, “Thanks for
the patch, but I was planning to add that myself
anyway in the next release.” The project coordi-
nator must recognize that no one person can be the
sole developer on an open source software project.
Without users and co-developers, there is nothing
to coordinate. It is the coordinator’s ultimate re-
sponsibility to understand that many developers
working together on a project are better than one
talented hacker.

J. Recognize your limitations

By no means does the fact that a project is
open source software imply success. No project,
either open or proprietary, can be guaranteed that
it will survive the test of time. Jamie Zawinski,
well-known hacker from his years with Netscape
and Mozilla, frames this statement for open source
software projects:

Open source does work, but it 1s most definitely
not a panacea. If there’s a cautionary tale here, it
1s that you can’t take a ... project, sprinkle it with
the magic pizie dust of “open source,” and have
everything magically work out. Software is hard.
The issues aren’t that simple. [8]

In other words: open source is not a magic bul-
let. A project must be interesting to other devel-
opers in order for them to contribute to it. Often,
this can be a hard sell. The program’s maintainer
must demonstrate the value of the software project
before interest can be garnered. True, the value
sometimes reveals itself to be pure “hack value,”
where the project’s only real purpose is as a vehi-
cle for interesting experiments.

An example of “hack value” is the FreeDOS In-
ternet Services Host (FisH). Written circa 1999
by Gregory R. Ball, FisH is a web server pro-
gram that runs on a PC running FreeDOS. Really,
the program was a demonstration that network
applications could be written for FreeDOS using
WATTCP. FisH was deployed on a 386 SX/25
with 4MB of memory, but the web site adver-
tised that it will run on a far lesser system. No

SSGRR-2001

one seriously believed that web servers would sud-
denly switch to a DOS-based system, and FisH
was never taken as a real alternative to more es-
tablished web servers such as Apache. However,
FisH was released as open source software, and
attracted quite a lot of attention for a long while.

The need to generate interest in order to attract
developers to a project is summarized by open
source software evangelist Eric S. Raymond in his
1996 essay, “The Cathedral and the Bazaar.” Ray-
mond’s statement is simple:

When you start community-building, what you
need to be able to present is a plausible promise.
Your program doesn’t have to work particularly
well. It can be crude, buggy, incomplete, and
poorly documented. What it must not fail to do is
(a) run, and (b) convince potential co-developers
that it can be evolved into something really neat in
the foreseeable future.

V. CONCLUSION

The concept of open source software has rev-
olutionized the software industry. No longer is
software developed behind closed doors, built like
cathedrals, carefully crafted by individual wizards
in splendid isolation. Rather, the bazaar model
of software development, where users of the soft-
ware are also its developers, has proven itself as a
successful way to develop software.

An organization’s Open Source strategy is be-
coming increasingly important in today’s econ-
omy. Many users are beginning to expect and
demand that much of the software they use be
available to them in source form. Therefore, it is
important to understand the qualities of effective
open source projects.

We have discussed ten basic qualities that an
open source project must possess in order for it to
succeed. By no means does this imply a recipe suc-
cess. No project, either open or proprietary, can
be guaranteed that it will survive the test of time.
A project must be interesting to other developers
in order for them to contribute to the software.
However, with the software available to its users in
source form, and a project coordinator who works
well with co-developers, any project has the poten-
tial to become a successful open source software
project.

10

ACKNOWLEDGMENTS

The author would like to acknowledge the con-

tributions of many people who are a part of the
FreeDOS Project.

REFERENCES

[1] The Open Source Initiative, Www.Opensource.org
[2] The Open Source Definition, Version
www.opensource.org/docs/definition.html
[38] The Free Software Foundation, www.gnu.org or www.fsf.org
]

1.8,

[4] Raymond, Eric S. The Cathedral and the
Bazaar, O’Reilly and Associates, 1999.
Also www.tuxedo.org/ esr/writings/cathedral-

bazaar/index.html

[6] Stallman, Richard. Why “Free Software” is better than
“Open Source”, www.gnu.org/philosophy /free-software-for-
freedom.html

[6] Stallman, Richard. The Free
www.gnu.org/philosophy/free-sw.html

[7] Stallman, Richard. The GNU General Public License, Ver-
sion 2, June 1991, www.gnu.org/copyleft /gpl.html

[8] Zawinski, Jamie. resignation and postmortem,
www.jwz.org/gruntle/nomo.html

Software Definition,

[9] Villani, Pasquale J. The FreeDOS Kernel, R&D Books,
1996.

[10] Welsh, Matt. Thoughts on
the Linuz Documentation Project,

www.slashdot.org/features/99/08,/25/1351232.shtml

[11] Vepstas, Linas. Call Center, Bug Tracking and
Project Management Tools for Linuz: Open Source
Bug Tracking/Trouble Ticketing Systems, April 2001,
www.linas.org/linux/pm.html

Jim Hall lives in St. Paul, Minnesota,
with his wife (Sara) and three cats (Mur-
phy, Vita, and Linus.) In 1994, he
founded the FreeDOS Project, an open
source project that aims to produce a free
version of DOS that is compatible with MS-
DOS. Jim also wrote GNU Robots, a free
software program that allows students to
learn the fundamentals of computer pro-
gramming by creating a program in which
a virtual robot explores a virtual world. Jim has also played
an important role in the development of other open source and
free software projects, and has contributed to GNU Emacs, DOS
Freemacs, and several DOS/UNIX compatibility libraries. At
work, Jim is Web Production Manager for the University of
Minnesota.

